Recognizing some of the modern CAPTCHAs

A CAPTCHA is a type of challenge-response test used in computing as an attempt to ensure that the response is not generated by a computer.

 - Wikipedia on CAPTCHAs

[image: image1.png]sqapoitins

[image: image2.png]hndgoing

[image: image3.png]waterpath

- CAPTCHAs on Wikipedia

Introduction and objectives

The Turing test has been extensively studied since it was created, but in the last few years the reverse Turing test has become the object of interest. The word “reverse” means that it is the computer which is presented the challenge to distinguish a human and a computer. These tests are also known as CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart). As a rule, a CAPTCHA consists of an image with distorted text and a text field where a user has to enter the text. The study of CAPTCHAs is also of great commercial interest since large companies demand protection against automated use of their services. For instance, a company which offers free e-mail in exchange for viewing ads will not profit if thousands of mailboxes are registered automatically since no human sees any ads; on the other hand, registering a lot of mailboxes is necessary for spamming. Theoretically, a good CAPTCHA has to block any attempt to be recognized by a computer program and at the same time it should be simple enough for a human to read. This presents a challenge for a researcher: are these images actually impossible for a computer to recognize?

The research carried out lately reveals that this problem can usually be solved but the results are often too abstract to be applied easily. On the other hand, this research was aimed to recognize some of the widely spread CAPTCHAs encountered on the daily basis. The target was accomplished: using the publicly available instruments and standard methods algorithms for CAPTCHAs used by four popular web sites were developed and performed well enough.

[image: image4.jpg]ARRYA

[image: image5.png]

[image: image6.jpg]

[image: image7.png]011491

Examples of considered CAPTCHAs

CAPTCHA authors always try to accomplish two goals: to make automated recognition as difficult as possible while preserving the simplicity for a human. According to the study by Microsoft Research [1], current computer programs outperform humans in recognizing separate characters. Thus, modern CAPTCHAs pay special attention to making segmentation (the process of extracting characters from the image) especially difficult. This can be done by adding various kinds of noise, placing characters very close to each other, etc.

Description of study

Let us define a CAPTCHA solution as finding a sequence of ASCII codes of characters drawn on an image. Commonly, the entire process of solving a particular type of CAPTCHA is split into three stages:

· Preprocessing, which involves cleaning up noise, removing distortions, etc.

· Segmentation, where characters are separated from the background and extracted from the image.

· Recognition, where characters are classified separately by one of the common character recognition algorithms.

As a rule, the first two stages require methods developed specially for a particular type of CAPTCHA, while standard techniques are developed for recognition, which are accurate enough and do not have any significant drawbacks. In this study, a neural network was chosen to be the recognition core, due to the fact that neural networks perform well enough while dealing with optical character recognition. The Fast Artificial Neural Network Library (FANN) implementation was used, because this library is mature and extremely fast. The same basic method of recognition was used for all considered CAPTCHAs, and this method was very similar in all cases. This method will be described in details later.

However, it turned out that some of the algorithms used in segmentation and designed specifically for a particular type of CAPTCHA can also be applied to other types after small modifications. The most common one was searching for connected components, due to the fact that characters can be easily represented as a union of one ore more connected components. Also, algorithms for merging components which belong to a single character and splitting components which contain more than one character were rather common. Obviously, these transformations cannot be absolutely precise without any extra knowledge about the characters' shape. Despite this fact, accuracy was good enough to produce satisfactory results.

Unfortunately, no common preprocessing methods were found, due to the fact that developers of all considered types of CAPTCHAs use completely different techniques of adding distortions and noise which results in the need to use different methods to reverse these transformations.

Thus, we can draw a conclusion. The more transformations are applied to the original image, the more general methods can be used.

Let us consider an example of the process of solving a CAPTCHA:

[image: image8.jpg]

[image: image9.jpg]

 [image: image10.jpg]

In order to make automated recognition as difficult as possible, developers put characters on a 3D wireframe which is rotated and moved. Also, they introduce variable brightness across the image which provides an additional level of protection. Not all of the images can be easily read by a human, but, compared to other types of CAPTCHA, this particular one seems to be quite user-friendly. Despite the fact the task of solving this CAPTCHA seems to be almost impossible at first, it turned out that a simple algorithm can do it quite accurately. This algorithm is based on exploiting a set of design mistakes in this CAPTCHA.

There are only two such mistakes. The first one allows one to perform inverse rotation, thus orienting the image in such a way that lines which appear to be horizontal for a human actually become horizontal. The second one is about separating characters from the background. Thus, from the algorithm's point of view, there is no significant difference between this type of CAPTCHA and classic two-dimensional ones. Let us consider these mistakes in more detail.

[image: image11.jpg]

[image: image12.jpg]

[image: image13.jpg]

Estimating rotation angle

Firstly, after examining a set of these images, it is easy to notice that the upper side of the wireframe (which is actually a rectangle) can be clearly seen due to the fact it doesn't intersect with the upper side of the image. This leads to a way of estimating the wireframe rotation angle. Furthermore, no images are rotated more that 15 degrees. This makes the estimation even simper. In order to find the rotation angle, we apply several transformations to the original image: the Erode operator (searches for the local minimum of each pixel), thresholding and color inversion. This results in a clear silhouette of the rectangle on the black background. Next, we rank each angle with a number showing how close this angle to the desired one. In order to find this number, consider the tangent line to the rectangle of the image which goes through one of its upper corners. We move this line downwards with a small step until it intersects with the rectangle. Starting from here, we save each intersection's square and keep moving the line for some fixed number of iterations. After that, we sum all squares and call this sum “angle's rank”. This way, all angles from -15 to 15 degrees can be ranked and the largest rank can be found. Thus, the desired angle is found.

[image: image14.jpg]

[image: image15.jpg]

[image: image16.jpg]

Separating characters from background doesn't always work properly

Secondly, it is easy to observe that characters are generally much darker than the background. Unfortunately, simply thresholding the entire image doesn't work here due to the fact there is no such threshold that would eliminate the noise and leave the letters untouched. However, a modification of thresholding (an adaptive one) is actually capable of producing almost perfect quality of separation. So, we floodfill the image starting from darkest points while keeping in mind that brightness can change rapidly within the area being floodfilled. After that, we just remove all points not marked by the floodfilling algorithm and invert colors.

[image: image17.jpg]P

[image: image18.jpg]

[image: image19.jpg]

Applying Dilate/Erode after rotation

Finally, in order to simplify the process of recognition a combination of Dilate/Erode algorithms is used. This helps to remove tiny holes within the letters while preserving their general shape.

[image: image20.jpg]

[image: image21.jpg]

[image: image22.jpg]

The process of segmentation seems to be much more straightforward than the preprocessing. Firstly, the algorithm searches for all connected components in the image which are large enough to be considered. Then, components which are close to each other are merged into a single one. This step is necessary because characters can get split up into several parts. Segmentation of this type of images is completed here; however, it is often required to split up too wide components into several parts. In its simplest form, the number of parts is calculated as a fraction of the segment's width and a constant which is thought to be the average character width. This would be pointless here because characters are distant enough from each other and get merged together very rarely.

Finally, recognition usually requires a pre-trained classifier. In order to train it, we collect a large number of pre-classified (manually or with another classifier) images, translate them into a machine-readable form and perform the training itself (details depend on the type of the classifier used). When dealing with neural networks, the backpropagation algorithm or its modifications are usually used. In this study, training images were created semi-automatically. Firstly, several hundreds of raw images were manually classified. Secondly, these images went through the preprocessing and segmentation. Thirdly, the segments were resized so that they could be fed into the neural network. This intermediate result was saved and manually cleared from unnecessary junk like segmetation errors, unreadable characters, etc. Finally, this set of images called “trainset” was used by the training algorithm. The internal structure of the neural network was always similar: a fully connected three-layer one, where the number of neurons in the first layer matches the number of pixels in the input images, the second one contains a third of the number of neurons int the first layer and the last one's number of neurons is the same as the number of different characters used in the CAPTCHA. The network was trained to produce a 1 at the output neuron for the correct answer and a -1 at all other neurons. Thus, the only thing one has to do to find the correct result is to find the maximum among all output neurons.

This approach yields 69% of correct results in the 100-image testset. Other CAPTCHAs considered in this study require other approaches. Preprocessing difficulty varies greatly while segmentation, as it has been already mentioned, is quite similar. One of the algorithms involved only changing the color space and thresholding in preprocessing, in another one a non-linear image stretching was used, the third one required to use a complicated sequence of various filters which did not necessarily lead to the correct result.

Examples of images of the third type[image: image28.png]

[image: image29.png]

[image: image30.png]

While the first two types of CAPTCHAs described in the previous section were rather simple (from the point of view of both ideas used and implementation), the third one turned out to be quite non-trivial. Despite the fact preprocessing was not perfect, its results were good enough to go on with the segmentation.

Images after preprocessing[image: image31.png]

[image: image32.png]

[image: image33.png]&Y 200

Segmentation was quite different compared to other types of images in a sense that it involved three sub-stages: pre-segmentation where image rotation angle was estimated, image de-rotation and the segmentation itself where characters were extracted from the image.

Extracted segments. Letters 'O' and 'D' are not separated in the third image[image: image34.png]

[image: image35.png]

[image: image36.png]

However, there was a significant difference between the process of recognition here and in the other types of images. It turned out that merging a part of segmentation and recognition here was quite efficient. To be precise, the neural network was used for separating characters. In order to do this, we search for such a combination of splitters between characters that the reaction of the neural network on these splitters is the largest possible. This adds a quarter to the percentage of successfully recognized images.

Example of neural network segmentation[image: image37.png]

Results and discussion

The target was accomplished. All considered types of CAPTCHAs were solved with the average result of a half of successfully recognized images. This result can be improved by paying additional attention to the preprocessing but it is good enough to call these CAPTCHAs inefficient.

These specific CAPTCHAs were chosen due to the popularity of the web services which use them and a good variety of special features. Thus, the result can be interpreted not just as “solving four types of CAPTCHAs”, but as an argument in favor of the hypothesis that any human-readable CAPTCHA that is created by a machine can also be read by a machine. In the following table examples of images that are not easily read by a human are provided.

	[image: image23.png]

First character – S or 8?
	[image: image24.png]

Third character – F or P?

	[image: image25.png]) E

Third character – B or E?

	[image: image26.png]

Second character – 1, 7 or T?

	[image: image27.png]

Read five characters

The method of bypassing a CAPTCHA through recognizing it is not the only one. Except for it, there are at least two widespread methods for doing this. The first one is about exploiting the implementation errors. For instance, the correct answer can be hidden inside the web form user inputs data to; in this case, the only thing a program has to do is to read this value. The second one is using the human ability to read these images correctly. People who do this may even be not aware of what they are actually doing. For example, a web site can ask people to read a CAPTCHA as they try to watch a video, to read a text or access some other kind of content. Also, there is another approach which is actively used on the Internet – people are asked to solve CAPTCHAs for a small amount of money. More details can be found in [2].

While no program managed to pass the classic Turing test yet, the reverse Turing test has been a battlefield for years. The best example of the reverse test (reCAPTCHA) is just an additional proof of this statement , due to the fact humans not only solve it but also produce it; in other words, this test is not “Completely Automated”, thus not satisfying the definition. It is the human participation which makes this test good. Thus, we end up with another argument in favor of the hypothesis that it is impossible to create an efficient reverse Turing test.

Used literature:

1. Chellapilla K., Larson K., Simard P. and Czerwinski M., “Computers beat Humans at Single Character Recognition in Reading based Human Interaction Proofs (HIPs)”, Microsoft Research

2. Motoyama M., Levchenko K., Kanich C., McCoy D., Voelker G.M., Savage S., “Re: CAPTCHAs – Understanding CAPTCHA-Solving Services in an Economic Context”, University of California, San Diego

3. Fiot J.B., Paucher R., “The Captchacker Project”, Ecole Centrale Paris

4. Sam Hocevar, PWNtcha – CAPTCHA decoder web site, http://sam.zoy.org/pwntcha/
5. Yan J., Ahmad A., “A Low-cost Attack on a Microsoft CAPTCHA”, School of Computing Science, Newcastle University, UK

6. Mori G., Malik J., “Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA” Computer Science Division, University of California, Berkeley

7. Open Computer Vision (OpenCV), http://opencv.willowgarage.com/wiki/
8. Fast Artificial Neural Network Library (FANN), http://leenissen.dk/fann/
9. Python Programming Language, http://www.python.org/
